cleanup old stuff, move test to __init__

This commit is contained in:
Dima Gerasimov 2019-04-07 20:27:55 +01:00
parent 1fa1ead94d
commit 57be4a1d63
3 changed files with 6 additions and 101 deletions

View file

@ -282,3 +282,8 @@ def by_night() -> Dict[date, Emfit]:
res[s.date] = s
return res
def test():
for d in get_datas():
assert len(d.epochs) > 0

97
plot.py
View file

@ -2,49 +2,10 @@
import matplotlib.dates as md # type: ignore
import numpy as np # type: ignore
import seaborn as sns # type: ignore
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt # type: ignore
from emfit import get_datas
def plot_file(jj: str):
pts = jj['sleep_epoch_datapoints']
tss = [datetime.fromtimestamp(p[0]) for p in pts]
vals = [p[1] for p in pts]
plt.figure(figsize=(20,10))
plt.plot(tss, vals)
xformatter = md.DateFormatter('%H:%M')
xlocator = md.MinuteLocator(interval = 15)
## Set xtick labels to appear every 15 minutes
plt.gcf().axes[0].xaxis.set_major_locator(xlocator)
## Format xtick labels as HH:MM
plt.gcf().axes[0].xaxis.set_major_formatter(xformatter)
plt.xlabel('time')
plt.ylabel('phase')
plt.title('Sleep phases')
plt.grid(True)
plt.savefig(f"{f}.png")
plt.close() # TODO
# plt.show()
pass
def plot_all():
for jj in iter_datas():
plot_file(jj)
# def stats():
# for jj in iter_datas():
# # TODO fimezone??
@ -63,47 +24,6 @@ def plot_all():
# print(*res)
def stats():
datas = get_datas()
cur = datas[0].date
for jj in datas:
# import ipdb; ipdb.set_trace()
while cur < jj.date:
cur += timedelta(days=1)
if cur.weekday() == 0:
print("---")
if cur != jj.date:
print(" ")
# cur = jj.date
print(f"{jj.date.strftime('%m.%d %a')} {jj.hrv_morning:.0f} {jj.hrv_evening:.0f} {jj.hrv_morning - jj.hrv_evening:3.0f} {hhmm(jj.sleep_minutes)} {jj.hrv_lf}/{jj.hrv_hf} {jj.sleep_hr_coverage:3.0f}")
def plot_recovery_vs_hr_percentage():
sns.set(color_codes=True)
xs = []
ys = []
for jj in get_datas():
xs.append(jj.hrv_morning - jj.hrv_evening)
ys.append(jj.sleep_hr_coverage)
ax = sns.regplot(x=xs, y=ys) # "recovery", y="percentage", data=pdata)
ax.set(xlabel='recovery', ylabel='percentage')
plt.show()
# TODO ah. it's only last segment?
# ok, handled in dashboard now
def plot_hr():
jj = get_datas()[-1]
tss, uu = jj.sleep_hr
tss = tss[::10]
uu = uu[::10]
plt.figure(figsize=(15,4))
ax = sns.pointplot(tss, uu, markers=" ")
# TODO wtf is that/??
ax.set(ylim=(None, 200))
plt.show()
def plot_hr_trend():
everything = get_datas()
tss = [e.end for e in everything]
@ -119,28 +39,13 @@ def plot_hr_trend():
# also timeline should have dynamic filters? maybe by tags
# then I could enable emfit feed and slog feed (pulled from all org notes) and see the correlation? also could pull workouts provider (and wlog) -- actually wlog processing could be moved to timeline too
# TODO could plot 'recovery' thing and see if it is impacted by workouts
# TODO time_start, time_end
# plot_hrv()
# stats()
# plot_recovery_vs_hr_percentage()
# stats()
plot_hr_trend()
# import matplotlib
# matplotlib.use('Agg')
# TODO maybe rmssd should only be computed if we have a reasonable chunk of datas
# also, trust it only if it's stable
# plot_timestamped([p[0] for p in pts], [p[1] for p in pts], mavgs=[]).savefig('res.png')
# TODO X axes: show hours and only two dates
# TODO 4 is awake, 3 REM, 2 light, 1 deep
# deviartion beyond 25-75 or 75-25 is bad??

View file

@ -1,5 +0,0 @@
#!/usr/bin/env python3
from emfit import get_datas
for d in get_datas():
print(d)