Lots of plots!

This commit is contained in:
Dima Gerasimov 2017-08-09 23:12:35 +01:00
parent dfabd72805
commit 9795c058fb

287
main.py
View file

@ -1,5 +1,7 @@
#!/usr/bin/env python3.6 #!/usr/bin/env python3.6
# TODO # TODO
from kython import *
from kython.plotting import *
from csv import DictReader from csv import DictReader
from itertools import islice from itertools import islice
@ -20,200 +22,115 @@ import matplotlib.pylab as pylab
pylab.rcParams['figure.figsize'] = (32.0, 24.0) pylab.rcParams['figure.figsize'] = (32.0, 24.0)
pylab.rcParams['font.size'] = 10 pylab.rcParams['font.size'] = 10
dimensions = 3 # Number of dimensions to reduce to
jawboneDataFile = "/L/Dropbox/backups/jawbone/2017.csv" # Data File Path
jawboneDataFeatures = "Jawbone/features.csv" # Data File Path jawboneDataFeatures = "Jawbone/features.csv" # Data File Path
featureDesc: Dict[str, str] = {} featureDesc: Dict[str, str] = {}
for x in genfromtxt(jawboneDataFeatures, dtype='unicode', delimiter=','): for x in genfromtxt(jawboneDataFeatures, dtype='unicode', delimiter=','):
featureDesc[x[0]] = x[1] featureDesc[x[0]] = x[1]
def filterData_Jawbone (data): def _safe_float(s: str):
#Removes null data (and corresponding features) if len(s) == 0:
data = data[0:,:] return None
# for i in range(16): return float(s)
# data = np.delete(data, 0, 1)
# print(data)
h, w = data.shape
data = np.where((data == ''), 0, data)
allZero = [np.all(np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
== 0) for i in range(w)]
allSame = [np.all(np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
== np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)[0]) for i in range(w)]
empty = np.logical_or(allZero, allSame)
n = [i for i in range(np.array(empty).size) if empty[i] == True]
return np.delete(data, n, axis=1)
dataAll = filterData_Jawbone(genfromtxt(jawboneDataFile, dtype='unicode', delimiter=',')) def _safe_int(s: str):
features = dataAll[0] if len(s) == 0:
features = [ return None
's_light', # 'light sleep' from app return int(float(s)) # TODO meh
's_awake', # 'woke up' from app (how many times you were awake)
's_deep' # 'sound sleep' from app def _safe_mins(s: float):
if s is None:
return None
return s / 60
class SleepData(NamedTuple):
date: str
asleep_time: float
awake_time: float
total: float
awake: float # 'awake for' from app, time awake duing sleep (seconds)
awakenings: int
light: float # 'light sleep' from app (seconds)
deep: float # 'deep sleep' from app (sec)
quality: float # ???
@classmethod
def from_jawbone_dict(cls, d: Dict[str, Any]):
return cls(
date=d['DATE'],
asleep_time=_safe_mins(_safe_float(d['s_asleep_time'])),
awake_time=_safe_mins(_safe_float(d['s_awake_time'])),
total=_safe_mins(_safe_float(d['s_duration'])),
light=_safe_mins(_safe_float(d['s_light'])),
deep =_safe_mins(_safe_float(d['s_deep'])),
awake=_safe_mins(_safe_float(d['s_awake'])),
awakenings=_safe_int(d['s_awakenings']),
quality=_safe_float(d['s_quality']),
)
def is_bad(self):
return self.deep is None and self.light is None
# @property
# def total(self) -> float:
# return self.light + self.deep
def iter_useful(data_file: str):
from csv import DictReader
with open(data_file) as fo:
reader = DictReader(fo)
for d in reader:
dt = SleepData.from_jawbone_dict(d)
if not dt.is_bad():
yield dt
files = [
"/L/Dropbox/backups/jawbone/2015.csv",
"/L/Dropbox/backups/jawbone/2016.csv",
"/L/Dropbox/backups/jawbone/2017.csv",
] ]
# TODO filter more carefully...
useful = concat(*(list(iter_useful(f)) for f in files))
def getIndex (data, features): # for u in useful:
index = [] # print(f"{u.total} {u.asleep_time} {u.awake_time}")
for f in features: # # pprint(u.total)
index.append(np.where((data[0] == f) == True)[0][0]) # pprint(u)
return index # pprint("---")
def getFeatures (data, features): dates = [parse_date(u.date, yearfirst=True, dayfirst=False) for u in useful]
h, w = data.shape # TODO filter outliers?
index = getIndex(data, features)
extracted = np.zeros(h-1)
for i in index:
temp = np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
temp /= np.amax(temp)
extracted = np.vstack((extracted, temp))
extracted = np.delete(extracted, 0, 0)
return extracted
for attr, lims, mavg, fig in [
# ('light', (0, 400), 5, None),
# ('deep', (0, 600), 5, None),
# ('total', (200, 600), 5, None),
('awake_time', (0, 1200), None, 1),
('asleep_time', (-100, 1000), None, 1),
# ('awakenings', (0, 5)),
]:
dates_wkd = [d for d in dates if d.weekday() < 5]
dates_wke = [d for d in dates if d.weekday() >= 5]
for dts, dn in [
(dates, 'total'),
# (dates_wkd, 'weekday'),
# (dates_wke, 'weekend')
]:
mavgs = []
if mavg is not None:
mavgs.append((mavg, 'green'))
fig = plot_timestamped(
dts,
[getattr(u, attr) for u in useful],
marker='.',
ratio=(16, 4),
mavgs=mavgs,
ylimits=lims,
ytick_size=60,
figure=1,
)
# plt.savefig(f'{attr}_{dn}.png')
# print(dataAll) plt.savefig('res.png')
data = getFeatures(dataAll, features) # fig.show()
def remNull(x, y):
nx = np.where(x == 0)
ny = np.where(y == 0)
nulli = np.concatenate((nx[0], ny[0]))
x = np.delete(x, nulli, 0)
y = np.delete(y, nulli, 0)
return x, y
def calculateVar(x, y) -> float:
x, y = remNull(x,y)
if len(x) == 0:
# TODO needs date?
print("Warning")
return 0.0 # TODO ???
meanX = np.mean(x)
meanY = np.mean(y)
n = float(x.shape[0])
print(n)
return ((1/n)*(np.sum((x-meanX)*(y-meanY))))
# return ((1/(n + 1))*(np.sum((x-meanX)*(y-meanY)))) # TODO fixme..
def calculateCov(data):
h, w = data.shape
cov = np.zeros([h, h])
for i in range(h):
for j in range(h):
cov[i][j] = calculateVar(data[i], data[j])
return cov
# In[119]:
# a = np.array([[1, 2, 3], [1, 2, 3]])
# print(a)
# print(calculateCov(a))
# print(np.cov(a))
# print("VAR")
# print(np.var(a[0]))
# print("DATA")
# print(data)
# print("NPCOV")
# print(np.cov(data))
# cov = calculateCov (data)
# print("COV")
# print(cov)
cov = np.cov(data) # TODO ???
# In[120]:
def plotFeatures (title, label1, label2, feature1, feature2):
plt.scatter(feature1, feature2)
plt.title(title)
plt.xlabel(label1)
plt.ylabel(label2)
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.show()
def plotMatrix(data):
r, c = data.shape
c=2
fig = plt.figure()
plotID = 1
for i in range(c):
for j in range(c):
f1 = getFeature(data, data[0][i])
f2 = getFeature(data, data[0][j])
ax = fig.add_subplot( c, c, plotID )
ax.scatter(f1, f2)
ax.set_title(data[0][i] + ' vs ' + data[0][j])
ax.axis('off')
plotID += 1
plt.show()
def plotMatrix1(features, data):
for f in features:
print(f"{f}: {featureDesc[f]}")
r, c = data.shape
fig = plt.figure()
plotID = 1
for i in range(r):
for j in range(r):
ax = fig.add_subplot( r, r, plotID )
x,y = remNull(data[i], data[j])
ax.scatter(x, y, s=2)
ax.set_title(features[i] + ' vs ' + features[j], fontsize=15)
ax.tick_params(axis='x', which='major', labelsize=8)
ax.tick_params(axis='y', which='major', labelsize=8)
# ax.set_xlim(0,1)
# ax.set_ylim(0,1)
plotID += 1
plt.show()
# In[121]:
# plotMatrix1(features, data)
# In[ ]:
def rankF(features, cov):
n = len(features)
eigenV = np.linalg.eig(cov)
eigVal = np.matrix(eigenV[0])
eigVec = np.matrix(eigenV[1])
order = (n-1) - np.argsort(eigVal)
rankFeatures = np.empty(n, dtype='<U30') # TODO
# print(rankFeatures.shape)
for i in range(n):
rankFeatures[i] = features[(np.where(order == i)[1][0])]
return rankFeatures, eigVal, eigVec
# print(features)
# rankFeatures, eigVal, eigVec = rankF(features, cov)
rankFeatures = features
# print(rankFeatures)
# print(len(rankFeatures))
r1, r2 = 0, dimensions
selectedFeatures = features
# selectedFeatures = np.take(rankFeatures, np.arange(r1, r2))
selectedData = getFeatures(dataAll, selectedFeatures)
# plotFeatures('111', 'f1', 'f2', selectedData[0], selectedData[1])
plotMatrix1(rankFeatures, selectedData)