my.core.pandas: rely on typing annotations from types-pandas

This commit is contained in:
Dima Gerasimov 2023-05-18 02:17:59 +01:00 committed by karlicoss
parent fe88380499
commit a98bc6daca

View file

@ -1,32 +1,46 @@
'''
Various pandas helpers and convenience functions
'''
from __future__ import annotations
# todo not sure if belongs to 'core'. It's certainly 'more' core than actual modules, but still not essential
# NOTE: this file is meant to be importable without Pandas installed
from datetime import datetime
import dataclasses
from datetime import datetime, timezone
from pprint import pformat
from typing import Optional, TYPE_CHECKING, Any, Iterable, Type, Dict, Literal
from typing import TYPE_CHECKING, Any, Iterable, Type, Dict, Literal, Callable, TypeVar
from decorator import decorator
from . import warnings, Res
from .common import LazyLogger, Json, asdict
from .error import error_to_json, extract_error_datetime
logger = LazyLogger(__name__)
if TYPE_CHECKING:
# this is kinda pointless at the moment, but handy to annotate DF returning methods now
# later will be unignored when they implement type annotations
import pandas as pd
# DataFrameT = pd.DataFrame
# TODO ugh. pretty annoying, having any is not very useful since it would allow arbitrary coercions..
# ideally want to use a type that's like Any but doesn't allow arbitrary coercions??
DataFrameT = Any
DataFrameT = pd.DataFrame
SeriesT = pd.Series
from pandas._typing import S1 # meh
FuncT = TypeVar('FuncT', bound=Callable[..., DataFrameT])
# huh interesting -- with from __future__ import annotations don't even need else clause here?
# but still if other modules import these we do need some fake runtime types here..
else:
# in runtime, make it defensive so it works without pandas
from typing import Optional
DataFrameT = Any
SeriesT = Optional # just some type with one argument
S1 = Any
def check_dateish(s) -> Iterable[str]:
def check_dateish(s: SeriesT[S1]) -> Iterable[str]:
import pandas as pd # noqa: F811 not actually a redefinition
ctype = s.dtype
if str(ctype).startswith('datetime64'):
return
@ -45,11 +59,22 @@ def check_dateish(s) -> Iterable[str]:
'''.strip()
def test_check_dateish() -> None:
import pandas as pd
# todo just a dummy test to check it doesn't crash, need something meaningful
s1 = pd.Series([1, 2, 3])
list(check_dateish(s1))
# fmt: off
ErrorColPolicy = Literal[
'add_if_missing', # add error column if it's missing
'warn' , # warn, but do not modify
'ignore' , # no warnings
]
# fmt: on
def check_error_column(df: DataFrameT, *, policy: ErrorColPolicy) -> Iterable[str]:
if 'error' in df:
@ -69,18 +94,14 @@ No 'error' column detected. You probably forgot to handle errors defensively, wh
yield wmsg
from typing import Any, Callable, TypeVar
FuncT = TypeVar('FuncT', bound=Callable[..., DataFrameT])
# TODO ugh. typing this is a mess... should I use mypy_extensions.VarArg/KwArgs?? or what??
from decorator import decorator
# TODO ugh. typing this is a mess... perhaps should use .compat.ParamSpec?
@decorator
def check_dataframe(f: FuncT, error_col_policy: ErrorColPolicy='add_if_missing', *args, **kwargs) -> DataFrameT:
df = f(*args, **kwargs)
def check_dataframe(f: FuncT, error_col_policy: ErrorColPolicy = 'add_if_missing', *args, **kwargs) -> DataFrameT:
df: DataFrameT = f(*args, **kwargs)
tag = '{f.__module__}:{f.__name__}'
# makes sense to keep super defensive
try:
for col, data in df.reset_index().iteritems():
for col, data in df.reset_index().items():
for w in check_dateish(data):
warnings.low(f"{tag}, column '{col}': {w}")
except Exception as e:
@ -92,11 +113,11 @@ def check_dataframe(f: FuncT, error_col_policy: ErrorColPolicy='add_if_missing',
logger.exception(e)
return df
# todo doctor: could have a suggesion to wrap dataframes with it?? discover by return type?
def error_to_row(e: Exception, *, dt_col: str='dt', tz=None) -> Json:
from .error import error_to_json, extract_error_datetime
def error_to_row(e: Exception, *, dt_col: str = 'dt', tz: timezone | None = None) -> Json:
edt = extract_error_datetime(e)
if edt is not None and edt.tzinfo is None and tz is not None:
edt = edt.replace(tzinfo=tz)
@ -118,11 +139,11 @@ def to_jsons(it: Iterable[Res[Any]]) -> Iterable[Json]:
# no type for dataclass?
Schema = Any
def _as_columns(s: Schema) -> Dict[str, Type]:
# todo would be nice to extract properties; add tests for this as well
import dataclasses as D
if D.is_dataclass(s):
return {f.name: f.type for f in D.fields(s)}
if dataclasses.is_dataclass(s):
return {f.name: f.type for f in dataclasses.fields(s)}
# else must be NamedTuple??
# todo assert my.core.common.is_namedtuple?
return getattr(s, '_field_types')
@ -130,7 +151,7 @@ def _as_columns(s: Schema) -> Dict[str, Type]:
# todo add proper types
@check_dataframe
def as_dataframe(it: Iterable[Res[Any]], schema: Optional[Schema]=None) -> DataFrameT:
def as_dataframe(it: Iterable[Res[Any]], schema: Schema | None = None) -> DataFrameT:
# todo warn if schema isn't specified?
# ok nice supports dataframe/NT natively
# https://github.com/pandas-dev/pandas/pull/27999
@ -139,26 +160,26 @@ def as_dataframe(it: Iterable[Res[Any]], schema: Optional[Schema]=None) -> DataF
# same for NamedTuple -- seems that it takes whatever schema the first NT has
# so we need to convert each individually... sigh
import pandas as pd # noqa: F811 not actually a redefinition
columns = None if schema is None else list(_as_columns(schema).keys())
return pd.DataFrame(to_jsons(it), columns=columns)
def test_as_dataframe() -> None:
import pytest
it = (dict(i=i, s=f'str{i}') for i in range(10))
with pytest.warns(UserWarning, match=r"No 'error' column") as record_warnings: # noqa: F841
df = as_dataframe(it)
df: DataFrameT = as_dataframe(it)
# todo test other error col policies
assert list(df.columns) == ['i', 's', 'error']
assert len(as_dataframe([])) == 0
from dataclasses import dataclass
@dataclass
@dataclasses.dataclass
class X:
x: int
# makes sense to specify the schema so the downstream program doesn't fail in case of empty iterable
df = as_dataframe([], schema=X)
assert list(df.columns) == ['x', 'error']
df2: DataFrameT = as_dataframe([], schema=X)
assert list(df2.columns) == ['x', 'error']