emfit: propagate errors properly, expose dataframe
This commit is contained in:
parent
78489157a1
commit
d9bbf7cbf0
3 changed files with 97 additions and 39 deletions
9
my/core/types.py
Normal file
9
my/core/types.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
import typing
|
||||
|
||||
if typing.TYPE_CHECKING:
|
||||
from typing import Any
|
||||
# todo would be nice to use some real stubs..
|
||||
DataFrameT = Any
|
||||
else:
|
||||
import pandas # type: ignore
|
||||
DataFrameT = pandas.DataFrame
|
|
@ -6,18 +6,21 @@ Consumes data exported by https://github.com/karlicoss/emfitexport
|
|||
"""
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Iterator
|
||||
from typing import Dict, List, Iterable
|
||||
|
||||
from ..core import get_files
|
||||
from ..core.common import mcachew
|
||||
from ..core.cachew import cache_dir
|
||||
from ..core.error import Res
|
||||
from ..core.types import DataFrameT
|
||||
|
||||
from my.config import emfit as config
|
||||
|
||||
|
||||
import emfitexport.dal as dal
|
||||
Emfit = dal.Emfit
|
||||
# todo ugh. need to make up my mind on log vs logger naming... I guessl ogger makes more sense
|
||||
logger = dal.log
|
||||
Emfit = dal.Emfit
|
||||
|
||||
|
||||
# TODO move to common?
|
||||
|
@ -28,42 +31,87 @@ def dir_hash(path: Path):
|
|||
|
||||
# TODO take __file__ into account somehow?
|
||||
@mcachew(cache_path=cache_dir() / 'emfit.cache', hashf=dir_hash, logger=dal.log)
|
||||
def iter_datas(path: Path=config.export_path) -> Iterator[Res[Emfit]]:
|
||||
# TODO FIMXE excluded_sids
|
||||
def datas(path: Path=config.export_path) -> Iterable[Res[Emfit]]:
|
||||
# TODO FIXME excluded_sids
|
||||
yield from dal.sleeps(config.export_path)
|
||||
|
||||
|
||||
def get_datas() -> List[Emfit]:
|
||||
return list(sorted(iter_datas(), key=lambda e: e.start))
|
||||
# TODO move away old entries if there is a diff??
|
||||
|
||||
|
||||
# TODO merge with jawbone data first
|
||||
def by_night() -> Dict[date, Emfit]:
|
||||
res: Dict[date, Emfit] = {}
|
||||
# TODO should be used for jawbone data as well?
|
||||
def pre_dataframe() -> Iterable[Res[Emfit]]:
|
||||
# TODO shit. I need some sort of interrupted sleep detection?
|
||||
from more_itertools import bucket
|
||||
grouped = bucket(get_datas(), key=lambda s: s.date)
|
||||
for dd in grouped:
|
||||
sleeps = list(grouped[dd])
|
||||
if len(sleeps) > 1:
|
||||
dal.log.warning("multiple sleeps per night, not handled yet: %s", sleeps)
|
||||
g: List[Emfit] = []
|
||||
|
||||
def flush() -> Iterable[Res[Emfit]]:
|
||||
if len(g) == 0:
|
||||
return
|
||||
elif len(g) == 1:
|
||||
r = g[0]
|
||||
g.clear()
|
||||
yield r
|
||||
else:
|
||||
err = RuntimeError('Multiple sleeps per night, not supprted yet: {g}')
|
||||
g.clear()
|
||||
yield err
|
||||
|
||||
for x in datas():
|
||||
if isinstance(x, Exception):
|
||||
yield x
|
||||
continue
|
||||
[s] = sleeps
|
||||
res[s.date] = s
|
||||
return res
|
||||
# otherwise, Emfit
|
||||
if len(g) != 0 and g[-1].date != x.date:
|
||||
yield from flush()
|
||||
g.append(x)
|
||||
yield from flush()
|
||||
|
||||
|
||||
def dataframe() -> DataFrameT:
|
||||
from datetime import timedelta
|
||||
dicts: List[Dict] = []
|
||||
last = None
|
||||
for s in pre_dataframe():
|
||||
if isinstance(s, Exception):
|
||||
# todo date would be nice too?
|
||||
d = {'error': str(s)}
|
||||
else:
|
||||
dd = s.date
|
||||
pday = dd - timedelta(days=1)
|
||||
if last is None or last.date != pday:
|
||||
hrv_change = None
|
||||
else:
|
||||
# todo it's change during the day?? dunno if reasonable metric
|
||||
hrv_change = s.hrv_evening - last.hrv_morning
|
||||
|
||||
# TODO use 'workdays' provider....
|
||||
d = {
|
||||
'date' : dd,
|
||||
|
||||
'sleep_start': s.sleep_start,
|
||||
'sleep_end' : s.sleep_end,
|
||||
'bed_time' : s.time_in_bed, # eh, this is derived frop sleep start / end. should we compute it on spot??
|
||||
|
||||
# these are emfit specific
|
||||
'coverage' : s.sleep_hr_coverage,
|
||||
'avg_hr' : s.measured_hr_avg,
|
||||
'hrv_evening': s.hrv_evening,
|
||||
'hrv_morning': s.hrv_morning,
|
||||
'recovery' : s.recovery,
|
||||
'hrv_change' : hrv_change,
|
||||
}
|
||||
last = s # meh
|
||||
dicts.append(d)
|
||||
|
||||
|
||||
import pandas # type: ignore
|
||||
return pandas.DataFrame(dicts)
|
||||
|
||||
# TODO add dataframe support to stat()
|
||||
def stats():
|
||||
return {
|
||||
'nights': len(by_night()),
|
||||
}
|
||||
from ..core import stat
|
||||
return stat(pre_dataframe)
|
||||
|
||||
|
||||
def main():
|
||||
for k, v in by_night().items():
|
||||
print(k, v.start, v.end)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
# TODO remove/deprecate it? I think used by timeline
|
||||
def get_datas() -> List[Emfit]:
|
||||
# todo ugh. run lint properly
|
||||
return list(sorted(datas(), key=lambda e: e.start))
|
||||
# TODO move away old entries if there is a diff??
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue