''' Various pandas helpers and convenience functions ''' from __future__ import annotations # todo not sure if belongs to 'core'. It's certainly 'more' core than actual modules, but still not essential # NOTE: this file is meant to be importable without Pandas installed import dataclasses from datetime import datetime, timezone from pprint import pformat from typing import TYPE_CHECKING, Any, Iterable, Type, Dict, Literal, Callable, TypeVar from decorator import decorator from . import warnings, Res from .common import LazyLogger, Json, asdict from .error import error_to_json, extract_error_datetime logger = LazyLogger(__name__) if TYPE_CHECKING: import pandas as pd DataFrameT = pd.DataFrame SeriesT = pd.Series from pandas._typing import S1 # meh FuncT = TypeVar('FuncT', bound=Callable[..., DataFrameT]) # huh interesting -- with from __future__ import annotations don't even need else clause here? # but still if other modules import these we do need some fake runtime types here.. else: from typing import Optional DataFrameT = Any SeriesT = Optional # just some type with one argument S1 = Any def check_dateish(s: SeriesT[S1]) -> Iterable[str]: import pandas as pd # noqa: F811 not actually a redefinition ctype = s.dtype if str(ctype).startswith('datetime64'): return s = s.dropna() if len(s) == 0: return all_timestamps = s.apply(lambda x: isinstance(x, (pd.Timestamp, datetime))).all() if not all_timestamps: return # not sure why it would happen, but ok tzs = s.map(lambda x: x.tzinfo).drop_duplicates() examples = s[tzs.index] # todo not so sure this warning is that useful... except for stuff without tz yield f''' All values are timestamp-like, but dtype is not datetime. Most likely, you have mixed timezones: {pformat(list(zip(examples, tzs)))} '''.strip() def test_check_dateish() -> None: import pandas as pd # todo just a dummy test to check it doesn't crash, need something meaningful s1 = pd.Series([1, 2, 3]) list(check_dateish(s1)) # fmt: off ErrorColPolicy = Literal[ 'add_if_missing', # add error column if it's missing 'warn' , # warn, but do not modify 'ignore' , # no warnings ] # fmt: on def check_error_column(df: DataFrameT, *, policy: ErrorColPolicy) -> Iterable[str]: if 'error' in df: return if policy == 'ignore': return wmsg = ''' No 'error' column detected. You probably forgot to handle errors defensively, which means a single bad entry might bring the whole dataframe down. '''.strip() if policy == 'add_if_missing': # todo maybe just add the warnings text as well? df['error'] = None wmsg += "\nAdding empty 'error' column (see 'error_col_policy' if you want to change this behaviour)" pass yield wmsg # TODO ugh. typing this is a mess... perhaps should use .compat.ParamSpec? @decorator def check_dataframe(f: FuncT, error_col_policy: ErrorColPolicy = 'add_if_missing', *args, **kwargs) -> DataFrameT: df: DataFrameT = f(*args, **kwargs) tag = '{f.__module__}:{f.__name__}' # makes sense to keep super defensive try: for col, data in df.reset_index().items(): for w in check_dateish(data): warnings.low(f"{tag}, column '{col}': {w}") except Exception as e: logger.exception(e) try: for w in check_error_column(df, policy=error_col_policy): warnings.low(f"{tag}, {w}") except Exception as e: logger.exception(e) return df # todo doctor: could have a suggesion to wrap dataframes with it?? discover by return type? def error_to_row(e: Exception, *, dt_col: str = 'dt', tz: timezone | None = None) -> Json: edt = extract_error_datetime(e) if edt is not None and edt.tzinfo is None and tz is not None: edt = edt.replace(tzinfo=tz) err_dict: Json = error_to_json(e) err_dict[dt_col] = edt return err_dict # todo not sure about naming def to_jsons(it: Iterable[Res[Any]]) -> Iterable[Json]: for r in it: if isinstance(r, Exception): yield error_to_row(r) else: yield asdict(r) # mm. https://github.com/python/mypy/issues/8564 # no type for dataclass? Schema = Any def _as_columns(s: Schema) -> Dict[str, Type]: # todo would be nice to extract properties; add tests for this as well if dataclasses.is_dataclass(s): return {f.name: f.type for f in dataclasses.fields(s)} # else must be NamedTuple?? # todo assert my.core.common.is_namedtuple? return getattr(s, '_field_types') # todo add proper types @check_dataframe def as_dataframe(it: Iterable[Res[Any]], schema: Schema | None = None) -> DataFrameT: # todo warn if schema isn't specified? # ok nice supports dataframe/NT natively # https://github.com/pandas-dev/pandas/pull/27999 # but it dispatches dataclass based on the first entry... # https://github.com/pandas-dev/pandas/blob/fc9fdba6592bdb5d0d1147ce4d65639acd897565/pandas/core/frame.py#L562 # same for NamedTuple -- seems that it takes whatever schema the first NT has # so we need to convert each individually... sigh import pandas as pd # noqa: F811 not actually a redefinition columns = None if schema is None else list(_as_columns(schema).keys()) return pd.DataFrame(to_jsons(it), columns=columns) # ugh. in principle this could be inside the test # might be due to use of from __future__ import annotations # can quickly reproduce by running pytest tests/tz.py tests/core/test_pandas.py # possibly will be resolved after fix in pytest? # see https://github.com/pytest-dev/pytest/issues/7856 @dataclasses.dataclass class _X: x: int def test_as_dataframe() -> None: import pytest it = (dict(i=i, s=f'str{i}') for i in range(10)) with pytest.warns(UserWarning, match=r"No 'error' column") as record_warnings: # noqa: F841 df: DataFrameT = as_dataframe(it) # todo test other error col policies assert list(df.columns) == ['i', 's', 'error'] assert len(as_dataframe([])) == 0 # makes sense to specify the schema so the downstream program doesn't fail in case of empty iterable df2: DataFrameT = as_dataframe([], schema=_X) assert list(df2.columns) == ['x', 'error']