90 lines
2.3 KiB
Python
90 lines
2.3 KiB
Python
'''
|
|
[[https://github.com/jonasoreland/runnerup][Runnerup]] exercise data (TCX format)
|
|
'''
|
|
|
|
REQUIRES = [
|
|
'python-tcxparser',
|
|
]
|
|
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
from typing import Iterable
|
|
|
|
from .core import Res, get_files
|
|
from .core.common import isoparse, Json
|
|
|
|
import tcxparser
|
|
|
|
from my.config import runnerup as config
|
|
|
|
|
|
# TODO later, use a proper namedtuple?
|
|
Workout = Json
|
|
|
|
|
|
def _parse(f: Path) -> Workout:
|
|
tcx = tcxparser.TCXParser(str(f))
|
|
|
|
sport = f.stem.split('_')[-1] # todo not sure how reliable...
|
|
hr_avg = tcx.hr_avg
|
|
|
|
distance_m = tcx.distance
|
|
duration_s = tcx.duration
|
|
# kmh to match endomondo.. should probably be CI
|
|
speed_avg_kmh = (distance_m / 1000) / (duration_s / 3600)
|
|
|
|
# eh. not sure if there is a better way
|
|
# for now use this to be compatible with Endomondo
|
|
# https://beepb00p.xyz/heartbeats_vs_kcals.html
|
|
# filtered for Endomondo running:
|
|
reg_coeff = 0.0993
|
|
intercept = -11.0739
|
|
total_beats = hr_avg * (duration_s / 60)
|
|
kcal_estimate = total_beats * reg_coeff + intercept
|
|
|
|
return {
|
|
'id' : f.name, # not sure?
|
|
'start_time' : isoparse(tcx.started_at),
|
|
'duration' : timedelta(seconds=tcx.duration),
|
|
'sport' : sport,
|
|
'heart_rate_avg': tcx.hr_avg,
|
|
'speed_avg' : speed_avg_kmh,
|
|
'kcal' : kcal_estimate,
|
|
}
|
|
# from more_itertools import zip_equal
|
|
# for ts, latlon, hr in zip_equal(
|
|
# tcx.time_values(),
|
|
# tcx.position_values(),
|
|
# tcx.hr_values(),
|
|
# # todo cadence?
|
|
# ):
|
|
# t = isoparse(ts)
|
|
|
|
|
|
def workouts() -> Iterable[Res[Workout]]:
|
|
for f in get_files(config.export_path):
|
|
try:
|
|
yield _parse(f)
|
|
except Exception as e:
|
|
yield e
|
|
|
|
|
|
from .core.pandas import DataFrameT, check_dataframe, error_to_row
|
|
@check_dataframe
|
|
def dataframe() -> DataFrameT:
|
|
def it():
|
|
for w in workouts():
|
|
if isinstance(w, Exception):
|
|
yield error_to_row(w)
|
|
else:
|
|
yield w
|
|
import pandas as pd # type: ignore
|
|
df = pd.DataFrame(it())
|
|
if 'error' not in df:
|
|
df['error'] = None
|
|
return df
|
|
|
|
|
|
from .core import stat, Stats
|
|
def stats() -> Stats:
|
|
return stat(dataframe)
|