HPI/my/core/stats.py

474 lines
12 KiB
Python

'''
Helpers for hpi doctor/stats functionality.
'''
import collections.abc
import importlib
import inspect
import typing
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from types import ModuleType
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Protocol,
Sequence,
Union,
cast,
)
from .types import asdict
Stats = Dict[str, Any]
class StatsFun(Protocol):
def __call__(self, *, quick: bool = False) -> Stats: ...
# global state that turns on/off quick stats
# can use the 'quick_stats' contextmanager
# to enable/disable this in cli so that module 'stats'
# functions don't have to implement custom 'quick' logic
QUICK_STATS = False
# in case user wants to use the stats functions/quick option
# elsewhere -- can use this decorator instead of editing
# the global state directly
@contextmanager
def quick_stats():
global QUICK_STATS
prev = QUICK_STATS
try:
QUICK_STATS = True
yield
finally:
QUICK_STATS = prev
def stat(
func: Union[Callable[[], Iterable[Any]], Iterable[Any]],
*,
quick: bool = False,
name: Optional[str] = None,
) -> Stats:
"""
Extracts various statistics from a passed iterable/callable, e.g.:
- number of items
- first/last item
- timestamps associated with first/last item
If quick is set, then only first 100 items of the iterable will be processed
"""
if callable(func):
fr = func()
if hasattr(fr, '__enter__') and hasattr(fr, '__exit__'):
# context managers has Iterable type, but they aren't data providers
# sadly doesn't look like there is a way to tell from typing annotations
# Ideally we'd detect this in is_data_provider...
# but there is no way of knowing without actually calling it first :(
return {}
fname = func.__name__
else:
# meh. means it's just a list.. not sure how to generate a name then
fr = func
fname = f'unnamed_{id(fr)}'
type_name = type(fr).__name__
extras = {}
if type_name == 'DataFrame':
# dynamic, because pandas is an optional dependency..
df = cast(Any, fr) # todo ugh, not sure how to annotate properly
df = df.reset_index()
fr = df.to_dict(orient='records')
dtypes = df.dtypes.to_dict()
extras['dtypes'] = dtypes
res = _stat_iterable(fr, quick=quick)
res.update(extras)
stat_name = name if name is not None else fname
return {
stat_name: res,
}
def test_stat() -> None:
# the bulk of testing is in test_stat_iterable
# works with 'anonymous' lists
res = stat([1, 2, 3])
[(name, v)] = res.items()
# note: name will be a little funny since anonymous list doesn't have one
assert v == {'count': 3}
#
# works with functions:
def fun():
return [4, 5, 6]
assert stat(fun) == {'fun': {'count': 3}}
#
# context managers are technically iterable
# , but usually we wouldn't want to compute stats for them
# this is mainly intended for guess_stats,
# since it can't tell whether the function is a ctx manager without calling it
@contextmanager
def cm():
yield 1
yield 3
assert stat(cm) == {} # type: ignore[arg-type]
#
# works with pandas dataframes
import numpy as np
import pandas as pd
def df() -> pd.DataFrame:
dates = pd.date_range(start='2024-02-10 08:00', end='2024-02-11 16:00', freq='5h')
return pd.DataFrame([f'value{i}' for i, _ in enumerate(dates)], index=dates, columns=['value'])
assert stat(df) == {
'df': {
'count': 7,
'dtypes': {
'index': np.dtype('<M8[ns]'),
'value': np.dtype('O'),
},
'first': pd.Timestamp('2024-02-10 08:00'),
'last': pd.Timestamp('2024-02-11 14:00'),
},
}
#
def get_stats(module_name: str, *, guess: bool = False) -> Optional[StatsFun]:
stats: Optional[StatsFun] = None
try:
module = importlib.import_module(module_name)
except Exception:
return None
stats = getattr(module, 'stats', None)
if stats is None:
stats = guess_stats(module)
return stats
# TODO maybe could be enough to annotate OUTPUTS or something like that?
# then stats could just use them as hints?
def guess_stats(module: ModuleType) -> Optional[StatsFun]:
"""
If the module doesn't have explicitly defined 'stat' function,
this is used to try to guess what could be included in stats automatically
"""
providers = _guess_data_providers(module)
if len(providers) == 0:
return None
def auto_stats(*, quick: bool = False) -> Stats:
res = {}
for k, v in providers.items():
res.update(stat(v, quick=quick, name=k))
return res
return auto_stats
def test_guess_stats() -> None:
import my.core.tests.auto_stats as M
auto_stats = guess_stats(M)
assert auto_stats is not None
res = auto_stats(quick=False)
assert res == {
'inputs': {
'count': 3,
'first': 'file1.json',
'last': 'file3.json',
},
'iter_data': {
'count': 9,
'first': datetime(2020, 1, 1, 1, 1, 1),
'last': datetime(2020, 1, 3, 1, 1, 1),
},
}
def _guess_data_providers(module: ModuleType) -> Dict[str, Callable]:
mfunctions = inspect.getmembers(module, inspect.isfunction)
return {k: v for k, v in mfunctions if is_data_provider(v)}
# todo how to exclude deprecated data providers?
def is_data_provider(fun: Any) -> bool:
"""
Criteria for being a "data provider":
1. returns iterable or something like that
2. takes no arguments? (otherwise not callable by stats anyway?)
3. doesn't start with an underscore (those are probably helper functions?)
"""
# todo maybe for 2 allow default arguments? not sure
# one example which could benefit is my.pdfs
if fun is None:
return False
# todo. uh.. very similar to what cachew is trying to do?
try:
sig = inspect.signature(fun)
except (ValueError, TypeError): # not a function?
return False
# has at least one argument without default values
if len(list(_sig_required_params(sig))) > 0:
return False
if hasattr(fun, '__name__'):
# probably a helper function?
if fun.__name__.startswith('_'):
return False
# inspect.signature might return str instead of a proper type object
# if from __future__ import annotations is used
# so best to rely on get_type_hints (which evals the annotations)
type_hints = typing.get_type_hints(fun)
return_type = type_hints.get('return')
if return_type is None:
return False
return _type_is_iterable(return_type)
def test_is_data_provider() -> None:
idp = is_data_provider
assert not idp(None)
assert not idp(int)
assert not idp("x")
def no_return_type():
return [1, 2, 3]
assert not idp(no_return_type)
lam = lambda: [1, 2]
assert not idp(lam)
def has_extra_args(count) -> List[int]:
return list(range(count))
assert not idp(has_extra_args)
def has_return_type() -> Sequence[str]:
return ['a', 'b', 'c']
assert idp(has_return_type)
def _helper_func() -> Iterator[Any]:
yield 1
assert not idp(_helper_func)
def inputs() -> Iterator[Any]:
yield 1
assert idp(inputs)
def producer_inputs() -> Iterator[Any]:
yield 1
assert idp(producer_inputs)
def _sig_required_params(sig: inspect.Signature) -> Iterator[inspect.Parameter]:
"""
Returns parameters the user is required to provide - e.g. ones that don't have default values
"""
for param in sig.parameters.values():
if param.default == inspect.Parameter.empty:
yield param
def test_sig_required_params() -> None:
def x() -> int:
return 5
assert len(list(_sig_required_params(inspect.signature(x)))) == 0
def y(arg: int) -> int:
return arg
assert len(list(_sig_required_params(inspect.signature(y)))) == 1
# from stats perspective, this should be treated as a data provider as well
# could be that the default value to the data provider is the 'default'
# path to use for inputs/a function to provide input data
def z(arg: int = 5) -> int:
return arg
assert len(list(_sig_required_params(inspect.signature(z)))) == 0
def _type_is_iterable(type_spec) -> bool:
origin = typing.get_origin(type_spec)
if origin is None:
return False
# explicitly exclude dicts... not sure?
if issubclass(origin, collections.abc.Mapping):
return False
if issubclass(origin, collections.abc.Iterable):
return True
return False
# todo docstring test?
def test_type_is_iterable() -> None:
fun = _type_is_iterable
assert not fun(None)
assert not fun(int)
assert not fun(Any)
assert not fun(Dict[int, int])
assert fun(List[int])
assert fun(Sequence[Dict[str, str]])
assert fun(Iterable[Any])
def _stat_item(item):
if item is None:
return None
if isinstance(item, Path):
return str(item)
return _guess_datetime(item)
def _stat_iterable(it: Iterable[Any], *, quick: bool = False) -> Stats:
from more_itertools import first, ilen, take
# todo not sure if there is something in more_itertools to compute this?
total = 0
errors = 0
first_item = None
last_item = None
def funcit():
nonlocal errors, first_item, last_item, total
for x in it:
total += 1
if isinstance(x, Exception):
errors += 1
else:
last_item = x
if first_item is None:
first_item = x
yield x
eit = funcit()
count: Any
if quick or QUICK_STATS:
initial = take(100, eit)
count = len(initial)
if first(eit, None) is not None: # todo can actually be none...
# haven't exhausted
count = f'{count}+'
else:
count = ilen(eit)
res = {
'count': count,
}
if total == 0:
# not sure but I guess a good balance? wouldn't want to throw early here?
res['warning'] = 'THE ITERABLE RETURNED NO DATA'
if errors > 0:
res['errors'] = errors
if (stat_first := _stat_item(first_item)) is not None:
res['first'] = stat_first
if (stat_last := _stat_item(last_item)) is not None:
res['last'] = stat_last
return res
def test_stat_iterable() -> None:
from datetime import datetime, timedelta, timezone
from typing import NamedTuple
dd = datetime.fromtimestamp(123, tz=timezone.utc)
day = timedelta(days=3)
class X(NamedTuple):
x: int
d: datetime
def it():
yield RuntimeError('oops!')
for i in range(2):
yield X(x=i, d=dd + day * i)
yield RuntimeError('bad!')
for i in range(3):
yield X(x=i * 10, d=dd + day * (i * 10))
yield X(x=123, d=dd + day * 50)
res = _stat_iterable(it())
assert res['count'] == 1 + 2 + 1 + 3 + 1
assert res['errors'] == 1 + 1
assert res['last'] == dd + day * 50
# experimental, not sure about it..
def _guess_datetime(x: Any) -> Optional[datetime]:
# todo hmm implement without exception..
try:
d = asdict(x)
except: # noqa: E722 bare except
return None
for _k, v in d.items():
if isinstance(v, datetime):
return v
return None
def test_guess_datetime() -> None:
from dataclasses import dataclass
from typing import NamedTuple
from .compat import fromisoformat
dd = fromisoformat('2021-02-01T12:34:56Z')
class A(NamedTuple):
x: int
class B(NamedTuple):
x: int
created: datetime
assert _guess_datetime(A(x=4)) is None
assert _guess_datetime(B(x=4, created=dd)) == dd
@dataclass
class C:
a: datetime
x: int
assert _guess_datetime(C(a=dd, x=435)) == dd
# TODO not sure what to return when multiple datetime fields?
# TODO test @property?