219 lines
5.6 KiB
Python
Executable file
219 lines
5.6 KiB
Python
Executable file
#!/usr/bin/env python3.6
|
|
# TODO
|
|
from csv import DictReader
|
|
from itertools import islice
|
|
|
|
from typing import Dict
|
|
|
|
# sleep = []
|
|
# with open('2017.csv', 'r') as fo:
|
|
# reader = DictReader(fo)
|
|
# for line in islice(reader, 0, 10):
|
|
# sleep
|
|
# print(line)
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from numpy import genfromtxt
|
|
import matplotlib.pylab as pylab
|
|
|
|
pylab.rcParams['figure.figsize'] = (32.0, 24.0)
|
|
pylab.rcParams['font.size'] = 10
|
|
|
|
|
|
|
|
dimensions = 3 # Number of dimensions to reduce to
|
|
jawboneDataFile = "/L/Dropbox/backups/jawbone/2017.csv" # Data File Path
|
|
|
|
jawboneDataFeatures = "Jawbone/features.csv" # Data File Path
|
|
featureDesc: Dict[str, str] = {}
|
|
for x in genfromtxt(jawboneDataFeatures, dtype='unicode', delimiter=','):
|
|
featureDesc[x[0]] = x[1]
|
|
|
|
def filterData_Jawbone (data):
|
|
#Removes null data (and corresponding features)
|
|
data = data[0:,:]
|
|
# for i in range(16):
|
|
# data = np.delete(data, 0, 1)
|
|
# print(data)
|
|
h, w = data.shape
|
|
data = np.where((data == ''), 0, data)
|
|
allZero = [np.all(np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
|
|
== 0) for i in range(w)]
|
|
allSame = [np.all(np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
|
|
== np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)[0]) for i in range(w)]
|
|
empty = np.logical_or(allZero, allSame)
|
|
n = [i for i in range(np.array(empty).size) if empty[i] == True]
|
|
return np.delete(data, n, axis=1)
|
|
|
|
dataAll = filterData_Jawbone(genfromtxt(jawboneDataFile, dtype='unicode', delimiter=','))
|
|
features = dataAll[0]
|
|
features = [
|
|
's_light', # 'light sleep' from app
|
|
's_awake', # 'woke up' from app (how many times you were awake)
|
|
's_deep' # 'sound sleep' from app
|
|
]
|
|
# TODO filter more carefully...
|
|
|
|
|
|
def getIndex (data, features):
|
|
index = []
|
|
for f in features:
|
|
index.append(np.where((data[0] == f) == True)[0][0])
|
|
return index
|
|
|
|
def getFeatures (data, features):
|
|
h, w = data.shape
|
|
index = getIndex(data, features)
|
|
extracted = np.zeros(h-1)
|
|
for i in index:
|
|
temp = np.delete([0 if col[i] == '' else col[i] for col in data], [0]).astype(float)
|
|
temp /= np.amax(temp)
|
|
extracted = np.vstack((extracted, temp))
|
|
extracted = np.delete(extracted, 0, 0)
|
|
return extracted
|
|
|
|
|
|
# print(dataAll)
|
|
data = getFeatures(dataAll, features)
|
|
|
|
|
|
def remNull(x, y):
|
|
nx = np.where(x == 0)
|
|
ny = np.where(y == 0)
|
|
nulli = np.concatenate((nx[0], ny[0]))
|
|
x = np.delete(x, nulli, 0)
|
|
y = np.delete(y, nulli, 0)
|
|
return x, y
|
|
|
|
def calculateVar(x, y) -> float:
|
|
x, y = remNull(x,y)
|
|
if len(x) == 0:
|
|
# TODO needs date?
|
|
print("Warning")
|
|
return 0.0 # TODO ???
|
|
meanX = np.mean(x)
|
|
meanY = np.mean(y)
|
|
n = float(x.shape[0])
|
|
print(n)
|
|
return ((1/n)*(np.sum((x-meanX)*(y-meanY))))
|
|
# return ((1/(n + 1))*(np.sum((x-meanX)*(y-meanY)))) # TODO fixme..
|
|
|
|
def calculateCov(data):
|
|
h, w = data.shape
|
|
cov = np.zeros([h, h])
|
|
|
|
for i in range(h):
|
|
for j in range(h):
|
|
cov[i][j] = calculateVar(data[i], data[j])
|
|
return cov
|
|
|
|
|
|
# In[119]:
|
|
# a = np.array([[1, 2, 3], [1, 2, 3]])
|
|
# print(a)
|
|
# print(calculateCov(a))
|
|
# print(np.cov(a))
|
|
# print("VAR")
|
|
# print(np.var(a[0]))
|
|
|
|
# print("DATA")
|
|
# print(data)
|
|
|
|
# print("NPCOV")
|
|
# print(np.cov(data))
|
|
|
|
# cov = calculateCov (data)
|
|
# print("COV")
|
|
# print(cov)
|
|
cov = np.cov(data) # TODO ???
|
|
|
|
|
|
# In[120]:
|
|
|
|
|
|
def plotFeatures (title, label1, label2, feature1, feature2):
|
|
plt.scatter(feature1, feature2)
|
|
|
|
plt.title(title)
|
|
plt.xlabel(label1)
|
|
plt.ylabel(label2)
|
|
|
|
plt.xlim(0, 1)
|
|
plt.ylim(0, 1)
|
|
|
|
plt.show()
|
|
|
|
def plotMatrix(data):
|
|
r, c = data.shape
|
|
c=2
|
|
fig = plt.figure()
|
|
plotID = 1
|
|
for i in range(c):
|
|
for j in range(c):
|
|
f1 = getFeature(data, data[0][i])
|
|
f2 = getFeature(data, data[0][j])
|
|
ax = fig.add_subplot( c, c, plotID )
|
|
ax.scatter(f1, f2)
|
|
ax.set_title(data[0][i] + ' vs ' + data[0][j])
|
|
ax.axis('off')
|
|
plotID += 1
|
|
plt.show()
|
|
|
|
def plotMatrix1(features, data):
|
|
for f in features:
|
|
print(f"{f}: {featureDesc[f]}")
|
|
r, c = data.shape
|
|
fig = plt.figure()
|
|
plotID = 1
|
|
for i in range(r):
|
|
for j in range(r):
|
|
ax = fig.add_subplot( r, r, plotID )
|
|
x,y = remNull(data[i], data[j])
|
|
ax.scatter(x, y, s=2)
|
|
ax.set_title(features[i] + ' vs ' + features[j], fontsize=15)
|
|
ax.tick_params(axis='x', which='major', labelsize=8)
|
|
ax.tick_params(axis='y', which='major', labelsize=8)
|
|
# ax.set_xlim(0,1)
|
|
# ax.set_ylim(0,1)
|
|
plotID += 1
|
|
plt.show()
|
|
|
|
|
|
# In[121]:
|
|
|
|
|
|
# plotMatrix1(features, data)
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
def rankF(features, cov):
|
|
n = len(features)
|
|
eigenV = np.linalg.eig(cov)
|
|
eigVal = np.matrix(eigenV[0])
|
|
eigVec = np.matrix(eigenV[1])
|
|
order = (n-1) - np.argsort(eigVal)
|
|
|
|
rankFeatures = np.empty(n, dtype='<U30') # TODO
|
|
# print(rankFeatures.shape)
|
|
for i in range(n):
|
|
rankFeatures[i] = features[(np.where(order == i)[1][0])]
|
|
|
|
return rankFeatures, eigVal, eigVec
|
|
|
|
# print(features)
|
|
# rankFeatures, eigVal, eigVec = rankF(features, cov)
|
|
rankFeatures = features
|
|
# print(rankFeatures)
|
|
# print(len(rankFeatures))
|
|
|
|
|
|
r1, r2 = 0, dimensions
|
|
selectedFeatures = features
|
|
# selectedFeatures = np.take(rankFeatures, np.arange(r1, r2))
|
|
selectedData = getFeatures(dataAll, selectedFeatures)
|
|
# plotFeatures('111', 'f1', 'f2', selectedData[0], selectedData[1])
|
|
|
|
plotMatrix1(rankFeatures, selectedData)
|