HPI/my/core/pandas.py
Sean Breckenridge eb26cf8633
my.core.serialize: orjson with additional default and _serialize hook (#140)
basic orjson serialize, json.dumps fallback

Lots of surrounding changes from this discussion:
0593c69056
2021-03-20 00:48:03 +00:00

165 lines
5.7 KiB
Python

'''
Various pandas helpers and convenience functions
'''
# todo not sure if belongs to 'core'. It's certainly 'more' core than actual modules, but still not essential
# NOTE: this file is meant to be importable without Pandas installed
from datetime import datetime
from pprint import pformat
from typing import Optional, TYPE_CHECKING, Any, Iterable, Type, List, Dict
from . import warnings, Res
from .common import LazyLogger, Json, asdict
logger = LazyLogger(__name__)
if TYPE_CHECKING:
# this is kinda pointless at the moment, but handy to annotate DF returning methods now
# later will be unignored when they implement type annotations
import pandas as pd # type: ignore
# DataFrameT = pd.DataFrame
# TODO ugh. pretty annoying, having any is not very useful since it would allow arbitrary coercions..
# ideally want to use a type that's like Any but doesn't allow arbitrary coercions??
DataFrameT = Any
else:
# in runtime, make it defensive so it works without pandas
DataFrameT = Any
def check_dateish(s) -> Iterable[str]:
import pandas as pd # type: ignore
ctype = s.dtype
if str(ctype).startswith('datetime64'):
return
s = s.dropna()
if len(s) == 0:
return
all_timestamps = s.apply(lambda x: isinstance(x, (pd.Timestamp, datetime))).all()
if not all_timestamps:
return # not sure why it would happen, but ok
tzs = s.map(lambda x: x.tzinfo).drop_duplicates()
examples = s[tzs.index]
# todo not so sure this warning is that useful... except for stuff without tz
yield f'''
All values are timestamp-like, but dtype is not datetime. Most likely, you have mixed timezones:
{pformat(list(zip(examples, tzs)))}
'''.strip()
from .compat import Literal
ErrorColPolicy = Literal[
'add_if_missing', # add error column if it's missing
'warn' , # warn, but do not modify
'ignore' , # no warnings
]
def check_error_column(df: DataFrameT, *, policy: ErrorColPolicy) -> Iterable[str]:
if 'error' in df:
return
if policy == 'ignore':
return
wmsg = '''
No 'error' column detected. You probably forgot to handle errors defensively, which means a single bad entry might bring the whole dataframe down.
'''.strip()
if policy == 'add_if_missing':
# todo maybe just add the warnings text as well?
df['error'] = None
wmsg += "\nAdding empty 'error' column (see 'error_col_policy' if you want to change this behaviour)"
pass
yield wmsg
from typing import Any, Callable, TypeVar
FuncT = TypeVar('FuncT', bound=Callable[..., DataFrameT])
# TODO ugh. typing this is a mess... shoul I use mypy_extensions.VarArg/KwArgs?? or what??
from decorator import decorator
@decorator
def check_dataframe(f: FuncT, error_col_policy: ErrorColPolicy='add_if_missing', *args, **kwargs) -> DataFrameT:
df = f(*args, **kwargs)
tag = '{f.__module__}:{f.__name__}'
# makes sense to keep super defensive
try:
for col, data in df.reset_index().iteritems():
for w in check_dateish(data):
warnings.low(f"{tag}, column '{col}': {w}")
except Exception as e:
logger.exception(e)
try:
for w in check_error_column(df, policy=error_col_policy):
warnings.low(f"{tag}, {w}")
except Exception as e:
logger.exception(e)
return df
# todo doctor: could have a suggesion to wrap dataframes with it?? discover by return type?
def error_to_row(e: Exception, *, dt_col: str='dt', tz=None) -> Json:
from .error import error_to_json, extract_error_datetime
edt = extract_error_datetime(e)
if edt is not None and edt.tzinfo is None and tz is not None:
edt = edt.replace(tzinfo=tz)
err_dict: Json = error_to_json(e)
err_dict[dt_col] = edt
return err_dict
# todo not sure about naming
def to_jsons(it: Iterable[Res[Any]]) -> Iterable[Json]:
for r in it:
if isinstance(r, Exception):
yield error_to_row(r)
else:
yield asdict(r)
# mm. https://github.com/python/mypy/issues/8564
# no type for dataclass?
Schema = Any
def _as_columns(s: Schema) -> Dict[str, Type]:
# todo would be nice to extract properties; add tests for this as well
import dataclasses as D
if D.is_dataclass(s):
return {f.name: f.type for f in D.fields(s)}
# else must be NamedTuple??
# todo assert my.core.common.is_namedtuple?
return getattr(s, '_field_types')
# todo add proper types
@check_dataframe
def as_dataframe(it: Iterable[Res[Any]], schema: Optional[Schema]=None) -> DataFrameT:
# todo warn if schema isn't specified?
# ok nice supports dataframe/NT natively
# https://github.com/pandas-dev/pandas/pull/27999
# but it dispatches dataclass based on the first entry...
# https://github.com/pandas-dev/pandas/blob/fc9fdba6592bdb5d0d1147ce4d65639acd897565/pandas/core/frame.py#L562
# same for NamedTuple -- seems that it takes whatever schema the first NT has
# so we need to convert each individually... sigh
import pandas as pd
columns = None if schema is None else list(_as_columns(schema).keys())
return pd.DataFrame(to_jsons(it), columns=columns)
def test_as_dataframe() -> None:
import pytest
it = (dict(i=i, s=f'str{i}') for i in range(10))
with pytest.warns(UserWarning, match=r"No 'error' column") as record_warnings:
df = as_dataframe(it)
# todo test other error col policies
assert list(df.columns) == ['i', 's', 'error']
assert len(as_dataframe([])) == 0
from dataclasses import dataclass
@dataclass
class X:
x: int
# makes sense to specify the schema so the downstream program doesn't fail in case of empty iterable
df = as_dataframe([], schema=X)
assert list(df.columns) == ['x', 'error']