Updated the documentation.

This commit is contained in:
Cédric Bonhomme 2017-02-17 22:36:17 +01:00
parent b96f917c71
commit 04e13e0982
No known key found for this signature in database
GPG key ID: A1CB94DE57B7A70D

View file

@ -74,19 +74,61 @@ Sets are used in order to select the pixels where the message will be hidden.
.. code-block:: bash .. code-block:: bash
# Hide the message with the Sieve of Eratosthenes # Hide the message with the Sieve of Eratosthenes
lsb-set hide -i ./tests/sample-files/Montenach.png --generator eratosthenes -m 'Joyeux Noël!' -o ./surprise.png $ lsb-set hide -i ./tests/sample-files/Montenach.png --generator eratosthenes -m 'Joyeux Noël!' -o ./surprise.png
# Try to reveal with Mersenne numbers # Try to reveal with Mersenne numbers
lsb-set reveal --generator mersenne -i ./surprise.png $ lsb-set reveal --generator mersenne -i ./surprise.png
# Try to reveal with fermat numbers # Try to reveal with fermat numbers
lsb-set reveal --generator fermat -i ./surprise.png $ lsb-set reveal --generator fermat -i ./surprise.png
# Try to reveal with carmichael numbers # Try to reveal with carmichael numbers
lsb-set reveal --generator carmichael -i ./surprise.png $ lsb-set reveal --generator carmichael -i ./surprise.png
# Try to reveal with Sieve of Eratosthenes # Try to reveal with Sieve of Eratosthenes
lsb-set reveal --generator eratosthenes -i ./surprise.png $ lsb-set reveal --generator eratosthenes -i ./surprise.png
# List all available generators
$ lsb-set list-generators
Dead_Man_Walking
Dead Man Walking.
OEIS_A000217
http://oeis.org/A000217
Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
ackermann
Ackermann number.
carmichael
https://oeis.org/A002997
Composite numbers n such that a^(n-1) == 1 (mod n) for every a coprime to n.
eratosthenes
Generate the prime numbers with the sieve of Eratosthenes.
eratosthenes_composite
Generate the composite numbers with the sieve of Eratosthenes.
fermat
Generate the n-th Fermat Number.
fibonacci
https://oeis.org/A000045
A generator for Fibonacci numbers, goes to next number in series on each call.
This generator start at 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...
identity
f(x) = x
log_gen
Logarithmic generator.
mersenne
Generate 2^n-1.
syracuse
Generate the sequence of Syracuse
An other example: An other example: