mirror of
https://github.com/cedricbonhomme/Stegano.git
synced 2025-06-28 19:26:14 +02:00
Reorganization of all modules.
This commit is contained in:
parent
e0bed8ba52
commit
872a5546fc
23 changed files with 77 additions and 43 deletions
156
stegano/lsbset/generators.py
Normal file
156
stegano/lsbset/generators.py
Normal file
|
@ -0,0 +1,156 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Stéganô - Stéganô is a basic Python Steganography module.
|
||||
# Copyright (C) 2010-2016 Cédric Bonhomme - https://www.cedricbonhomme.org
|
||||
#
|
||||
# For more information : https://github.com/cedricbonhomme/Stegano
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>
|
||||
|
||||
__author__ = "Cedric Bonhomme"
|
||||
__version__ = "$Revision: 0.2 $"
|
||||
__date__ = "$Date: 2011/12/28 $"
|
||||
__revision__ = "$Date: 2012/12/14 $"
|
||||
__license__ = "GPLv3"
|
||||
|
||||
import math
|
||||
import itertools
|
||||
|
||||
def identity():
|
||||
"""
|
||||
f(x) = x
|
||||
"""
|
||||
n = 0
|
||||
while True:
|
||||
yield n
|
||||
n += 1
|
||||
|
||||
def Dead_Man_Walking():
|
||||
n = 0
|
||||
while True:
|
||||
yield n + 7
|
||||
n += 2
|
||||
|
||||
def OEIS_A000217():
|
||||
"""
|
||||
http://oeis.org/A000217
|
||||
Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
|
||||
"""
|
||||
n = 0
|
||||
while True:
|
||||
yield (n*(n+1))//2
|
||||
n += 1
|
||||
|
||||
def fermat():
|
||||
"""
|
||||
Generate the n-th Fermat Number.
|
||||
"""
|
||||
y = 5
|
||||
while True:
|
||||
yield y
|
||||
y = pow(y-1,2)+1
|
||||
|
||||
def mersenne():
|
||||
"""
|
||||
Generate 2^n-1.
|
||||
"""
|
||||
y = 1
|
||||
while True:
|
||||
yield y
|
||||
y = 2*y + 1
|
||||
|
||||
def eratosthenes():
|
||||
"""
|
||||
Generate the prime numbers with the sieve of Eratosthenes.
|
||||
"""
|
||||
d = {}
|
||||
for i in itertools.count(2):
|
||||
if i in d:
|
||||
for j in d[i]:
|
||||
d[i + j] = d.get(i + j, []) + [j]
|
||||
del d[i]
|
||||
else:
|
||||
d[i * i] = [i]
|
||||
yield i
|
||||
|
||||
def eratosthenes_composite():
|
||||
"""
|
||||
Generate the composite numbers with the sieve of Eratosthenes.
|
||||
"""
|
||||
p1 = 3
|
||||
for p2 in eratosthenes():
|
||||
for n in range(p1 + 1, p2):
|
||||
yield n
|
||||
p1 = p2
|
||||
|
||||
def carmichael():
|
||||
for m in eratosthenes_composite():
|
||||
for a in range(2, m):
|
||||
if pow(a,m,m) != a:
|
||||
break
|
||||
else:
|
||||
yield m
|
||||
|
||||
def ackermann(m, n):
|
||||
"""
|
||||
Ackermann number.
|
||||
"""
|
||||
if m == 0:
|
||||
return n + 1
|
||||
elif n == 0:
|
||||
return ackermann(m - 1, 1)
|
||||
else:
|
||||
return ackermann(m - 1, ackermann(m, n - 1))
|
||||
|
||||
def fibonacci():
|
||||
"""
|
||||
A generator for Fibonacci numbers, goes to next number in series on each call.
|
||||
This generator start at 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...
|
||||
See: http://oeis.org/A000045
|
||||
"""
|
||||
a, b = 1, 2
|
||||
while True:
|
||||
yield a
|
||||
a, b = b, a + b
|
||||
|
||||
def syracuse(l=15):
|
||||
"""
|
||||
Generate the sequence of Syracuse.
|
||||
"""
|
||||
y = l
|
||||
while True:
|
||||
yield y
|
||||
q,r = divmod(y,2)
|
||||
if r == 0:
|
||||
y = q
|
||||
else:
|
||||
y = 3*y + 1
|
||||
|
||||
def log_gen():
|
||||
"""
|
||||
Logarithmic generator.
|
||||
"""
|
||||
y = 1
|
||||
while True:
|
||||
adder = max(1, math.pow(10, int(math.log10(y))))
|
||||
yield int(y)
|
||||
y = y + adder
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Point of entry in execution mode.
|
||||
f = fibonacci()
|
||||
for x in range(13):
|
||||
#print(next(f), end=' ') # 0 1 1 2 3 5 8 13 21 34 55 89 144
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue