mirror of
https://github.com/cedricbonhomme/Stegano.git
synced 2025-05-12 17:18:30 +02:00
147 lines
3.7 KiB
Python
147 lines
3.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Stéganô - Stéganô is a basic Python Steganography module.
|
|
# Copyright (C) 2010-2017 Cédric Bonhomme - https://www.cedricbonhomme.org
|
|
#
|
|
# For more information : https://github.com/cedricbonhomme/Stegano
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>
|
|
|
|
__author__ = "Cedric Bonhomme"
|
|
__version__ = "$Revision: 0.2 $"
|
|
__date__ = "$Date: 2011/12/28 $"
|
|
__revision__ = "$Date: 2012/12/14 $"
|
|
__license__ = "GPLv3"
|
|
|
|
import math
|
|
import itertools
|
|
from typing import Iterator
|
|
|
|
def identity() -> Iterator[int]:
|
|
"""f(x) = x
|
|
"""
|
|
n = 0
|
|
while True:
|
|
yield n
|
|
n += 1
|
|
|
|
def Dead_Man_Walking() -> Iterator[int]:
|
|
"""Dead Man Walking.
|
|
"""
|
|
n = 0
|
|
while True:
|
|
yield n + 7
|
|
n += 2
|
|
|
|
def triangular_numbers() -> Iterator[int]:
|
|
"""http://oeis.org/A000217
|
|
Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
|
|
"""
|
|
n = 0
|
|
while True:
|
|
yield (n*(n+1))//2
|
|
n += 1
|
|
|
|
def fermat() -> Iterator[int]:
|
|
"""https://oeis.org/A000215
|
|
Generate the n-th Fermat Number.
|
|
"""
|
|
y = 3
|
|
while True:
|
|
yield y
|
|
y = pow(y-1,2)+1
|
|
|
|
def mersenne() -> Iterator[int]:
|
|
"""https://oeis.org/A001348
|
|
Generate 2^n - 1.
|
|
"""
|
|
y = 3
|
|
while True:
|
|
yield y
|
|
y = 2*y + 1
|
|
|
|
def eratosthenes() -> Iterator[int]:
|
|
"""Generate the prime numbers with the sieve of Eratosthenes.
|
|
"""
|
|
d = {} # type: dict[int, int]
|
|
for i in itertools.count(2):
|
|
if i in d:
|
|
for j in d[i]:
|
|
d[i + j] = d.get(i + j, []) + [j]
|
|
del d[i]
|
|
else:
|
|
d[i * i] = [i]
|
|
yield i
|
|
|
|
def eratosthenes_composite() -> Iterator[int]:
|
|
"""Generate the composite numbers with the sieve of Eratosthenes.
|
|
"""
|
|
p1 = 3
|
|
for p2 in eratosthenes():
|
|
for n in range(p1 + 1, p2):
|
|
yield n
|
|
p1 = p2
|
|
|
|
def carmichael() -> Iterator[int]:
|
|
"""https://oeis.org/A002997
|
|
Composite numbers n such that a^(n-1) == 1 (mod n) for every a coprime to n.
|
|
"""
|
|
for m in eratosthenes_composite():
|
|
for a in range(2, m):
|
|
if pow(a,m,m) != a:
|
|
break
|
|
else:
|
|
yield m
|
|
|
|
def ackermann(m: int, n: int) -> int:
|
|
"""Ackermann number.
|
|
"""
|
|
if m == 0:
|
|
return n + 1
|
|
elif n == 0:
|
|
return ackermann(m - 1, 1)
|
|
else:
|
|
return ackermann(m - 1, ackermann(m, n - 1))
|
|
|
|
def fibonacci() -> Iterator[int]:
|
|
"""https://oeis.org/A000045
|
|
A generator for Fibonacci numbers, goes to next number in series on each call.
|
|
This generator start at 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...
|
|
"""
|
|
a, b = 1, 2
|
|
while True:
|
|
yield a
|
|
a, b = b, a + b
|
|
|
|
def syracuse(l: int = 15) -> Iterator[int]:
|
|
"""Generate the sequence of Syracuse.
|
|
"""
|
|
y = l
|
|
while True:
|
|
yield y
|
|
q,r = divmod(y,2)
|
|
if r == 0:
|
|
y = q
|
|
else:
|
|
y = 3*y + 1
|
|
|
|
def log_gen() -> Iterator[int]:
|
|
"""Logarithmic generator.
|
|
"""
|
|
y = 1
|
|
while True:
|
|
adder = max(1, math.pow(10, int(math.log10(y))))
|
|
yield int(y)
|
|
y = y + int(adder)
|