Stegano/stegano/lsb/generators.py
2024-01-01 20:32:02 +01:00

254 lines
6.1 KiB
Python

#!/usr/bin/env python
# Stegano - Stegano is a pure Python steganography module.
# Copyright (C) 2010-2024 Cédric Bonhomme - https://www.cedricbonhomme.org
#
# For more information : https://git.sr.ht/~cedric/stegano
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
__author__ = "Cedric Bonhomme"
__version__ = "$Revision: 0.3 $"
__date__ = "$Date: 2011/12/28 $"
__revision__ = "$Date: 2021/11/29 $"
__license__ = "GPLv3"
import itertools
import math
from typing import Any, Dict, Iterator, List
import cv2
import numpy as np
def identity() -> Iterator[int]:
"""f(x) = x"""
n = 0
while True:
yield n
n += 1
def triangular_numbers() -> Iterator[int]:
"""Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
http://oeis.org/A000217
"""
n = 0
while True:
yield (n * (n + 1)) // 2
n += 1
def fermat() -> Iterator[int]:
"""Generate the n-th Fermat Number.
https://oeis.org/A000215
"""
y = 3
while True:
yield y
y = pow(y - 1, 2) + 1
def mersenne() -> Iterator[int]:
"""Generate 2^p - 1, where p is prime.
https://oeis.org/A001348
"""
prime_numbers = eratosthenes()
while True:
yield 2 ** next(prime_numbers) - 1
def eratosthenes() -> Iterator[int]:
"""Generate the prime numbers with the sieve of Eratosthenes.
https://oeis.org/A000040
"""
d: Dict[int, List[int]] = {}
for i in itertools.count(2):
if i in d:
for j in d[i]:
d[i + j] = d.get(i + j, []) + [j]
del d[i]
else:
d[i * i] = [i]
yield i
def composite() -> Iterator[int]:
"""Generate the composite numbers using the sieve of Eratosthenes.
https://oeis.org/A002808
"""
p1 = 3
for p2 in eratosthenes():
yield from range(p1 + 1, p2)
p1 = p2
def carmichael() -> Iterator[int]:
"""Composite numbers n such that a^(n-1) == 1 (mod n) for every a coprime
to n.
https://oeis.org/A002997
"""
for m in composite():
for a in range(2, m):
if pow(a, m, m) != a:
break
else:
yield m
def ackermann_slow(m: int, n: int) -> int:
"""Ackermann number."""
if m == 0:
return n + 1
elif n == 0:
return ackermann_slow(m - 1, 1)
else:
return ackermann_slow(m - 1, ackermann_slow(m, n - 1))
def ackermann_naive(m: int) -> Iterator[int]:
"""Naive Ackermann encapsulated in a generator."""
n = 0
while True:
yield ackermann_slow(m, n)
n += 1
def ackermann_fast(m: int, n: int) -> int:
"""Ackermann number."""
while m >= 4:
if n == 0:
n = 1
else:
n = ackermann_fast(m, n - 1)
m -= 1
if m == 3:
return (1 << n + 3) - 3
elif m == 2:
return (n << 1) + 3
elif m == 1:
return n + 2
else:
return n + 1
def ackermann(m: int) -> Iterator[int]:
"""Ackermann encapsulated in a generator."""
n = 0
while True:
yield ackermann_fast(m, n)
n += 1
def fibonacci() -> Iterator[int]:
"""Generate the sequence of Fibonacci.
https://oeis.org/A000045
"""
a, b = 1, 2
while True:
yield a
a, b = b, a + b
def log_gen() -> Iterator[int]:
"""Logarithmic generator."""
y = 1
while True:
adder = max(1, math.pow(10, int(math.log10(y))))
yield int(y)
y = y + int(adder)
polys = {
2: [2, 1],
3: [3, 1],
4: [4, 1],
5: [5, 2],
6: [6, 1],
7: [7, 1],
8: [8, 4, 3, 2],
9: [9, 4],
10: [10, 3],
11: [11, 2],
12: [12, 6, 4, 1],
13: [13, 4, 3, 1],
14: [14, 8, 6, 1],
15: [15, 1],
16: [16, 12, 3, 1],
17: [17, 3],
18: [18, 7],
19: [19, 5, 2, 1],
20: [20, 3],
21: [21, 2],
22: [22, 1],
23: [23, 5],
24: [24, 7, 2, 1],
25: [25, 3],
26: [26, 6, 2, 1],
27: [27, 5, 2, 1],
28: [28, 3],
29: [29, 2],
30: [30, 23, 2, 1],
31: [31, 3],
}
def LFSR(m: int) -> Iterator[int]:
"""LFSR generator of the given size
https://en.wikipedia.org/wiki/Linear-feedback_shift_register
"""
n: int = m.bit_length() - 1
# Set initial state to {1 0 0 ... 0}
state: List[int] = [0] * n
state[0] = 1
feedback: int = 0
poly: List[int] = polys[n]
while True:
# Compute the feedback bit
feedback = 0
for i in range(len(poly)):
feedback = feedback ^ state[poly[i] - 1]
# Roll the registers
state.pop()
# Add the feedback bit
state.insert(0, feedback)
# Convert the registers to an int
out = sum(e * (2**i) for i, e in enumerate(state))
yield out
def shi_tomashi(
image_path: str,
max_corners: int = 100,
quality: float = 0.01,
min_distance: float = 10.0,
) -> Iterator[int]:
"""Shi-Tomachi corner generator of the given points
https://docs.opencv.org/4.x/d4/d8c/tutorial_py_shi_tomasi.html
"""
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
corners: np.ndarray = cv2.goodFeaturesToTrack(
gray, max_corners, quality, min_distance
)
corners_int: np.ndarray[Any, np.dtype[np.signedinteger[Any]]] = np.array(
np.intp(corners)
)
i = 0
while True:
x, y = corners_int[i].ravel()
# Compute the pixel number with top left of image as origin
# using coordinates of the corner.
# (y * number of pixels a row) + pixels left in last row
yield (y * image.shape[1]) + x
i += 1