mirror of
https://github.com/cedricbonhomme/Stegano.git
synced 2025-05-12 17:18:30 +02:00
138 lines
No EOL
3.2 KiB
Python
138 lines
No EOL
3.2 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Stéganô - Stéganô is a basic Python Steganography module.
|
|
# Copyright (C) 2010-2011 Cédric Bonhomme - http://cedricbonhomme.org/
|
|
#
|
|
# For more information : http://bitbucket.org/cedricbonhomme/stegano/
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>
|
|
|
|
__author__ = "Cedric Bonhomme"
|
|
__version__ = "$Revision: 0.1 $"
|
|
__date__ = "$Date: 2011/12/28 $"
|
|
__license__ = "GPLv3"
|
|
|
|
import itertools
|
|
|
|
def identity():
|
|
"""
|
|
f(x) = x
|
|
"""
|
|
n = 0
|
|
while True:
|
|
yield n
|
|
n += 1
|
|
|
|
def OEIS_A000217():
|
|
"""
|
|
http://oeis.org/A000217
|
|
Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
|
|
"""
|
|
n = 0
|
|
while True:
|
|
yield (n*(n+1))/2
|
|
n += 1
|
|
|
|
def fermat():
|
|
"""
|
|
Generate the n-th Fermat Number.
|
|
"""
|
|
y = 5
|
|
while True:
|
|
yield y
|
|
y = pow(y-1,2)+1
|
|
|
|
def mersenne():
|
|
"""
|
|
Generate 2^n-1.
|
|
"""
|
|
y = 1
|
|
while True:
|
|
yield y
|
|
y = 2*y + 1
|
|
|
|
def eratosthenes():
|
|
"""
|
|
Generate the prime numbers with the sieve of Eratosthenes.
|
|
"""
|
|
d = {}
|
|
for i in itertools.count(2):
|
|
if i in d:
|
|
for j in d[i]:
|
|
d[i + j] = d.get(i + j, []) + [j]
|
|
del d[i]
|
|
else:
|
|
d[i * i] = [i]
|
|
yield i
|
|
|
|
def eratosthenes_composite():
|
|
"""
|
|
Generate the composite numbers with the sieve of Eratosthenes.
|
|
"""
|
|
p1 = 3
|
|
for p2 in eratosthenes():
|
|
for n in range(p1 + 1, p2):
|
|
yield n
|
|
p1 = p2
|
|
|
|
def carmichael():
|
|
for m in eratosthenes_composite():
|
|
for a in range(2, m):
|
|
if pow(a,m,m) != a:
|
|
break
|
|
else:
|
|
yield m
|
|
|
|
def ackermann(m, n):
|
|
"""
|
|
Ackermann number.
|
|
"""
|
|
if m == 0:
|
|
return n + 1
|
|
elif n == 0:
|
|
return ackermann(m - 1, 1)
|
|
else:
|
|
return ackermann(m - 1, ackermann(m, n - 1))
|
|
|
|
def fibonacci():
|
|
"""
|
|
A generator for Fibonacci numbers, goes to next number in series on each call.
|
|
This generator start at 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...
|
|
See: http://oeis.org/A000045
|
|
"""
|
|
a, b = 1, 2
|
|
while True:
|
|
yield a
|
|
a, b = b, a + b
|
|
|
|
def syracuse(l=15):
|
|
"""
|
|
Generate the sequence of Syracuse.
|
|
"""
|
|
y = l
|
|
while True:
|
|
yield y
|
|
q,r = divmod(y,2)
|
|
if r == 0:
|
|
y = q
|
|
else:
|
|
y = 3*y + 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Point of entry in execution mode.
|
|
f = fibonacci()
|
|
for x in range(13):
|
|
print f.next(), # 0 1 1 2 3 5 8 13 21 34 55 89 144 |